KILLEDRuntime Complexity (full) proof of /tmp/tmplaXZMk/OvConsOS_nokinds_C.xml
The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF).0 CpxTRS↳1 DecreasingLoopProof (⇔, 4626 ms)↳2 BOUNDS(n^1, INF)↳3 RenamingProof (⇔, 0 ms)↳4 CpxRelTRS↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)↳6 typed CpxTrs↳7 OrderProof (LOWER BOUND(ID), 0 ms)↳8 typed CpxTrs↳9 RewriteLemmaProof (LOWER BOUND(ID), 435 ms)↳10 BEST↳11 typed CpxTrs↳12 RewriteLemmaProof (LOWER BOUND(ID), 38 ms)↳13 BEST↳14 typed CpxTrs↳15 RewriteLemmaProof (LOWER BOUND(ID), 0 ms)↳16 BEST↳17 typed CpxTrs↳18 RewriteLemmaProof (LOWER BOUND(ID), 107 ms)↳19 BEST↳20 typed CpxTrs↳21 NoRewriteLemmaProof (LOWER BOUND(ID), 0 ms)↳22 typed CpxTrs↳23 NoRewriteLemmaProof (LOWER BOUND(ID), 0 ms)↳24 typed CpxTrs↳25 RewriteLemmaProof (LOWER BOUND(ID), 62 ms)↳26 BEST↳27 typed CpxTrs↳28 NoRewriteLemmaProof (LOWER BOUND(ID), 0 ms)↳29 typed CpxTrs↳30 RewriteLemmaProof (LOWER BOUND(ID), 55 ms)↳31 BEST↳32 typed CpxTrs↳33 RewriteLemmaProof (LOWER BOUND(ID), 48 ms)↳34 BEST↳35 typed CpxTrs↳36 RewriteLemmaProof (LOWER BOUND(ID), 177 ms)↳37 BEST↳38 typed CpxTrs↳39 typed CpxTrs↳40 typed CpxTrs↳41 typed CpxTrs↳42 typed CpxTrs↳43 typed CpxTrs↳44 typed CpxTrs↳45 typed CpxTrs↳46 typed CpxTrs(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: FULL(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
cons(mark(X1), X2) →+ mark(cons(X1, X2))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X1 / mark(X1)].
The result substitution is [ ].(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
active(zeros) → mark(cons(0', zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0')
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0', IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
S is empty.
Rewrite Strategy: FULL(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.(6) Obligation:
TRS:
Rules:
active(zeros) → mark(cons(0', zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0')
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0', IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
zeros :: zeros:0':mark:tt:nil:ok
mark :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
cons :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
0' :: zeros:0':mark:tt:nil:ok
U11 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
tt :: zeros:0':mark:tt:nil:ok
s :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
length :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
U21 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
nil :: zeros:0':mark:tt:nil:ok
U31 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
take :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
and :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNat :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatIList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
proper :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
ok :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
top :: zeros:0':mark:tt:nil:ok → top
hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok
hole_top2_0 :: top
gen_zeros:0':mark:tt:nil:ok3_0 :: Nat → zeros:0':mark:tt:nil:ok(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
active, cons, s, length, take, isNatList, isNat, and, isNatIList, U11, U21, U31, proper, topThey will be analysed ascendingly in the following order:
cons < active
s < active
length < active
take < active
isNatList < active
isNat < active
and < active
isNatIList < active
U11 < active
U21 < active
U31 < active
active < top
cons < proper
s < proper
length < proper
take < proper
isNatList < proper
isNat < proper
and < proper
isNatIList < proper
U11 < proper
U21 < proper
U31 < proper
proper < top(8) Obligation:
TRS:
Rules:
active(zeros) → mark(cons(0', zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0')
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0', IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
zeros :: zeros:0':mark:tt:nil:ok
mark :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
cons :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
0' :: zeros:0':mark:tt:nil:ok
U11 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
tt :: zeros:0':mark:tt:nil:ok
s :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
length :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
U21 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
nil :: zeros:0':mark:tt:nil:ok
U31 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
take :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
and :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNat :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatIList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
proper :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
ok :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
top :: zeros:0':mark:tt:nil:ok → top
hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok
hole_top2_0 :: top
gen_zeros:0':mark:tt:nil:ok3_0 :: Nat → zeros:0':mark:tt:nil:okGenerator Equations:
gen_zeros:0':mark:tt:nil:ok3_0(0) ⇔ zeros
gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) ⇔ mark(gen_zeros:0':mark:tt:nil:ok3_0(x))The following defined symbols remain to be analysed:
cons, active, s, length, take, isNatList, isNat, and, isNatIList, U11, U21, U31, proper, topThey will be analysed ascendingly in the following order:
cons < active
s < active
length < active
take < active
isNatList < active
isNat < active
and < active
isNatIList < active
U11 < active
U21 < active
U31 < active
active < top
cons < proper
s < proper
length < proper
take < proper
isNatList < proper
isNat < proper
and < proper
isNatIList < proper
U11 < proper
U21 < proper
U31 < proper
proper < top(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)Induction Base:
cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, 0)), gen_zeros:0':mark:tt:nil:ok3_0(b))Induction Step:
cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, +(n5_0, 1))), gen_zeros:0':mark:tt:nil:ok3_0(b)) →RΩ(1)
mark(cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b))) →IH
mark(*4_0)We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
active(zeros) → mark(cons(0', zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0')
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0', IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
zeros :: zeros:0':mark:tt:nil:ok
mark :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
cons :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
0' :: zeros:0':mark:tt:nil:ok
U11 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
tt :: zeros:0':mark:tt:nil:ok
s :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
length :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
U21 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
nil :: zeros:0':mark:tt:nil:ok
U31 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
take :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
and :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNat :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatIList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
proper :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
ok :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
top :: zeros:0':mark:tt:nil:ok → top
hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok
hole_top2_0 :: top
gen_zeros:0':mark:tt:nil:ok3_0 :: Nat → zeros:0':mark:tt:nil:okLemmas:
cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)Generator Equations:
gen_zeros:0':mark:tt:nil:ok3_0(0) ⇔ zeros
gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) ⇔ mark(gen_zeros:0':mark:tt:nil:ok3_0(x))The following defined symbols remain to be analysed:
s, active, length, take, isNatList, isNat, and, isNatIList, U11, U21, U31, proper, topThey will be analysed ascendingly in the following order:
s < active
length < active
take < active
isNatList < active
isNat < active
and < active
isNatIList < active
U11 < active
U21 < active
U31 < active
active < top
s < proper
length < proper
take < proper
isNatList < proper
isNat < proper
and < proper
isNatIList < proper
U11 < proper
U21 < proper
U31 < proper
proper < top(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1310_0))) → *4_0, rt ∈ Ω(n13100)Induction Base:
s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, 0)))Induction Step:
s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, +(n1310_0, 1)))) →RΩ(1)
mark(s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1310_0)))) →IH
mark(*4_0)We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
active(zeros) → mark(cons(0', zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0')
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0', IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
zeros :: zeros:0':mark:tt:nil:ok
mark :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
cons :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
0' :: zeros:0':mark:tt:nil:ok
U11 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
tt :: zeros:0':mark:tt:nil:ok
s :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
length :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
U21 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
nil :: zeros:0':mark:tt:nil:ok
U31 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
take :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
and :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNat :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatIList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
proper :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
ok :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
top :: zeros:0':mark:tt:nil:ok → top
hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok
hole_top2_0 :: top
gen_zeros:0':mark:tt:nil:ok3_0 :: Nat → zeros:0':mark:tt:nil:okLemmas:
cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1310_0))) → *4_0, rt ∈ Ω(n13100)Generator Equations:
gen_zeros:0':mark:tt:nil:ok3_0(0) ⇔ zeros
gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) ⇔ mark(gen_zeros:0':mark:tt:nil:ok3_0(x))The following defined symbols remain to be analysed:
length, active, take, isNatList, isNat, and, isNatIList, U11, U21, U31, proper, topThey will be analysed ascendingly in the following order:
length < active
take < active
isNatList < active
isNat < active
and < active
isNatIList < active
U11 < active
U21 < active
U31 < active
active < top
length < proper
take < proper
isNatList < proper
isNat < proper
and < proper
isNatIList < proper
U11 < proper
U21 < proper
U31 < proper
proper < top(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1919_0))) → *4_0, rt ∈ Ω(n19190)Induction Base:
length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, 0)))Induction Step:
length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, +(n1919_0, 1)))) →RΩ(1)
mark(length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1919_0)))) →IH
mark(*4_0)We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
active(zeros) → mark(cons(0', zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0')
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0', IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
zeros :: zeros:0':mark:tt:nil:ok
mark :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
cons :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
0' :: zeros:0':mark:tt:nil:ok
U11 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
tt :: zeros:0':mark:tt:nil:ok
s :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
length :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
U21 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
nil :: zeros:0':mark:tt:nil:ok
U31 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
take :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
and :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNat :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatIList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
proper :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
ok :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
top :: zeros:0':mark:tt:nil:ok → top
hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok
hole_top2_0 :: top
gen_zeros:0':mark:tt:nil:ok3_0 :: Nat → zeros:0':mark:tt:nil:okLemmas:
cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1310_0))) → *4_0, rt ∈ Ω(n13100)
length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1919_0))) → *4_0, rt ∈ Ω(n19190)Generator Equations:
gen_zeros:0':mark:tt:nil:ok3_0(0) ⇔ zeros
gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) ⇔ mark(gen_zeros:0':mark:tt:nil:ok3_0(x))The following defined symbols remain to be analysed:
take, active, isNatList, isNat, and, isNatIList, U11, U21, U31, proper, topThey will be analysed ascendingly in the following order:
take < active
isNatList < active
isNat < active
and < active
isNatIList < active
U11 < active
U21 < active
U31 < active
active < top
take < proper
isNatList < proper
isNat < proper
and < proper
isNatIList < proper
U11 < proper
U21 < proper
U31 < proper
proper < top(18) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
take(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2629_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n26290)Induction Base:
take(gen_zeros:0':mark:tt:nil:ok3_0(+(1, 0)), gen_zeros:0':mark:tt:nil:ok3_0(b))Induction Step:
take(gen_zeros:0':mark:tt:nil:ok3_0(+(1, +(n2629_0, 1))), gen_zeros:0':mark:tt:nil:ok3_0(b)) →RΩ(1)
mark(take(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2629_0)), gen_zeros:0':mark:tt:nil:ok3_0(b))) →IH
mark(*4_0)We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(19) Complex Obligation (BEST)
(20) Obligation:
TRS:
Rules:
active(zeros) → mark(cons(0', zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0')
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0', IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
zeros :: zeros:0':mark:tt:nil:ok
mark :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
cons :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
0' :: zeros:0':mark:tt:nil:ok
U11 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
tt :: zeros:0':mark:tt:nil:ok
s :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
length :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
U21 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
nil :: zeros:0':mark:tt:nil:ok
U31 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
take :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
and :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNat :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatIList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
proper :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
ok :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
top :: zeros:0':mark:tt:nil:ok → top
hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok
hole_top2_0 :: top
gen_zeros:0':mark:tt:nil:ok3_0 :: Nat → zeros:0':mark:tt:nil:okLemmas:
cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1310_0))) → *4_0, rt ∈ Ω(n13100)
length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1919_0))) → *4_0, rt ∈ Ω(n19190)
take(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2629_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n26290)Generator Equations:
gen_zeros:0':mark:tt:nil:ok3_0(0) ⇔ zeros
gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) ⇔ mark(gen_zeros:0':mark:tt:nil:ok3_0(x))The following defined symbols remain to be analysed:
isNatList, active, isNat, and, isNatIList, U11, U21, U31, proper, topThey will be analysed ascendingly in the following order:
isNatList < active
isNat < active
and < active
isNatIList < active
U11 < active
U21 < active
U31 < active
active < top
isNatList < proper
isNat < proper
and < proper
isNatIList < proper
U11 < proper
U21 < proper
U31 < proper
proper < top(21) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol isNatList.(22) Obligation:
TRS:
Rules:
active(zeros) → mark(cons(0', zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0')
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0', IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
zeros :: zeros:0':mark:tt:nil:ok
mark :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
cons :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
0' :: zeros:0':mark:tt:nil:ok
U11 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
tt :: zeros:0':mark:tt:nil:ok
s :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
length :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
U21 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
nil :: zeros:0':mark:tt:nil:ok
U31 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
take :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
and :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNat :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatIList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
proper :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
ok :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
top :: zeros:0':mark:tt:nil:ok → top
hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok
hole_top2_0 :: top
gen_zeros:0':mark:tt:nil:ok3_0 :: Nat → zeros:0':mark:tt:nil:okLemmas:
cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1310_0))) → *4_0, rt ∈ Ω(n13100)
length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1919_0))) → *4_0, rt ∈ Ω(n19190)
take(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2629_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n26290)Generator Equations:
gen_zeros:0':mark:tt:nil:ok3_0(0) ⇔ zeros
gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) ⇔ mark(gen_zeros:0':mark:tt:nil:ok3_0(x))The following defined symbols remain to be analysed:
isNat, active, and, isNatIList, U11, U21, U31, proper, topThey will be analysed ascendingly in the following order:
isNat < active
and < active
isNatIList < active
U11 < active
U21 < active
U31 < active
active < top
isNat < proper
and < proper
isNatIList < proper
U11 < proper
U21 < proper
U31 < proper
proper < top(23) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol isNat.(24) Obligation:
TRS:
Rules:
active(zeros) → mark(cons(0', zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0')
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0', IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
zeros :: zeros:0':mark:tt:nil:ok
mark :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
cons :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
0' :: zeros:0':mark:tt:nil:ok
U11 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
tt :: zeros:0':mark:tt:nil:ok
s :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
length :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
U21 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
nil :: zeros:0':mark:tt:nil:ok
U31 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
take :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
and :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNat :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatIList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
proper :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
ok :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
top :: zeros:0':mark:tt:nil:ok → top
hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok
hole_top2_0 :: top
gen_zeros:0':mark:tt:nil:ok3_0 :: Nat → zeros:0':mark:tt:nil:okLemmas:
cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1310_0))) → *4_0, rt ∈ Ω(n13100)
length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1919_0))) → *4_0, rt ∈ Ω(n19190)
take(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2629_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n26290)Generator Equations:
gen_zeros:0':mark:tt:nil:ok3_0(0) ⇔ zeros
gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) ⇔ mark(gen_zeros:0':mark:tt:nil:ok3_0(x))The following defined symbols remain to be analysed:
and, active, isNatIList, U11, U21, U31, proper, topThey will be analysed ascendingly in the following order:
and < active
isNatIList < active
U11 < active
U21 < active
U31 < active
active < top
and < proper
isNatIList < proper
U11 < proper
U21 < proper
U31 < proper
proper < top(25) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
and(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n4889_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n48890)Induction Base:
and(gen_zeros:0':mark:tt:nil:ok3_0(+(1, 0)), gen_zeros:0':mark:tt:nil:ok3_0(b))Induction Step:
and(gen_zeros:0':mark:tt:nil:ok3_0(+(1, +(n4889_0, 1))), gen_zeros:0':mark:tt:nil:ok3_0(b)) →RΩ(1)
mark(and(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n4889_0)), gen_zeros:0':mark:tt:nil:ok3_0(b))) →IH
mark(*4_0)We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(26) Complex Obligation (BEST)
(27) Obligation:
TRS:
Rules:
active(zeros) → mark(cons(0', zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0')
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0', IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
zeros :: zeros:0':mark:tt:nil:ok
mark :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
cons :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
0' :: zeros:0':mark:tt:nil:ok
U11 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
tt :: zeros:0':mark:tt:nil:ok
s :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
length :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
U21 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
nil :: zeros:0':mark:tt:nil:ok
U31 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
take :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
and :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNat :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatIList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
proper :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
ok :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
top :: zeros:0':mark:tt:nil:ok → top
hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok
hole_top2_0 :: top
gen_zeros:0':mark:tt:nil:ok3_0 :: Nat → zeros:0':mark:tt:nil:okLemmas:
cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1310_0))) → *4_0, rt ∈ Ω(n13100)
length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1919_0))) → *4_0, rt ∈ Ω(n19190)
take(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2629_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n26290)
and(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n4889_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n48890)Generator Equations:
gen_zeros:0':mark:tt:nil:ok3_0(0) ⇔ zeros
gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) ⇔ mark(gen_zeros:0':mark:tt:nil:ok3_0(x))The following defined symbols remain to be analysed:
isNatIList, active, U11, U21, U31, proper, topThey will be analysed ascendingly in the following order:
isNatIList < active
U11 < active
U21 < active
U31 < active
active < top
isNatIList < proper
U11 < proper
U21 < proper
U31 < proper
proper < top(28) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol isNatIList.(29) Obligation:
TRS:
Rules:
active(zeros) → mark(cons(0', zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0')
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0', IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
zeros :: zeros:0':mark:tt:nil:ok
mark :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
cons :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
0' :: zeros:0':mark:tt:nil:ok
U11 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
tt :: zeros:0':mark:tt:nil:ok
s :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
length :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
U21 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
nil :: zeros:0':mark:tt:nil:ok
U31 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
take :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
and :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNat :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatIList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
proper :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
ok :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
top :: zeros:0':mark:tt:nil:ok → top
hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok
hole_top2_0 :: top
gen_zeros:0':mark:tt:nil:ok3_0 :: Nat → zeros:0':mark:tt:nil:okLemmas:
cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1310_0))) → *4_0, rt ∈ Ω(n13100)
length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1919_0))) → *4_0, rt ∈ Ω(n19190)
take(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2629_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n26290)
and(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n4889_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n48890)Generator Equations:
gen_zeros:0':mark:tt:nil:ok3_0(0) ⇔ zeros
gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) ⇔ mark(gen_zeros:0':mark:tt:nil:ok3_0(x))The following defined symbols remain to be analysed:
U11, active, U21, U31, proper, topThey will be analysed ascendingly in the following order:
U11 < active
U21 < active
U31 < active
active < top
U11 < proper
U21 < proper
U31 < proper
proper < top(30) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
U11(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n7239_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n72390)Induction Base:
U11(gen_zeros:0':mark:tt:nil:ok3_0(+(1, 0)), gen_zeros:0':mark:tt:nil:ok3_0(b))Induction Step:
U11(gen_zeros:0':mark:tt:nil:ok3_0(+(1, +(n7239_0, 1))), gen_zeros:0':mark:tt:nil:ok3_0(b)) →RΩ(1)
mark(U11(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n7239_0)), gen_zeros:0':mark:tt:nil:ok3_0(b))) →IH
mark(*4_0)We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(31) Complex Obligation (BEST)
(32) Obligation:
TRS:
Rules:
active(zeros) → mark(cons(0', zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0')
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0', IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
zeros :: zeros:0':mark:tt:nil:ok
mark :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
cons :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
0' :: zeros:0':mark:tt:nil:ok
U11 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
tt :: zeros:0':mark:tt:nil:ok
s :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
length :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
U21 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
nil :: zeros:0':mark:tt:nil:ok
U31 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
take :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
and :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNat :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatIList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
proper :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
ok :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
top :: zeros:0':mark:tt:nil:ok → top
hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok
hole_top2_0 :: top
gen_zeros:0':mark:tt:nil:ok3_0 :: Nat → zeros:0':mark:tt:nil:okLemmas:
cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1310_0))) → *4_0, rt ∈ Ω(n13100)
length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1919_0))) → *4_0, rt ∈ Ω(n19190)
take(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2629_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n26290)
and(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n4889_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n48890)
U11(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n7239_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n72390)Generator Equations:
gen_zeros:0':mark:tt:nil:ok3_0(0) ⇔ zeros
gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) ⇔ mark(gen_zeros:0':mark:tt:nil:ok3_0(x))The following defined symbols remain to be analysed:
U21, active, U31, proper, topThey will be analysed ascendingly in the following order:
U21 < active
U31 < active
active < top
U21 < proper
U31 < proper
proper < top(33) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
U21(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n9868_0))) → *4_0, rt ∈ Ω(n98680)Induction Base:
U21(gen_zeros:0':mark:tt:nil:ok3_0(+(1, 0)))Induction Step:
U21(gen_zeros:0':mark:tt:nil:ok3_0(+(1, +(n9868_0, 1)))) →RΩ(1)
mark(U21(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n9868_0)))) →IH
mark(*4_0)We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(34) Complex Obligation (BEST)
(35) Obligation:
TRS:
Rules:
active(zeros) → mark(cons(0', zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0')
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0', IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
zeros :: zeros:0':mark:tt:nil:ok
mark :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
cons :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
0' :: zeros:0':mark:tt:nil:ok
U11 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
tt :: zeros:0':mark:tt:nil:ok
s :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
length :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
U21 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
nil :: zeros:0':mark:tt:nil:ok
U31 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
take :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
and :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNat :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatIList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
proper :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
ok :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
top :: zeros:0':mark:tt:nil:ok → top
hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok
hole_top2_0 :: top
gen_zeros:0':mark:tt:nil:ok3_0 :: Nat → zeros:0':mark:tt:nil:okLemmas:
cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1310_0))) → *4_0, rt ∈ Ω(n13100)
length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1919_0))) → *4_0, rt ∈ Ω(n19190)
take(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2629_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n26290)
and(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n4889_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n48890)
U11(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n7239_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n72390)
U21(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n9868_0))) → *4_0, rt ∈ Ω(n98680)Generator Equations:
gen_zeros:0':mark:tt:nil:ok3_0(0) ⇔ zeros
gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) ⇔ mark(gen_zeros:0':mark:tt:nil:ok3_0(x))The following defined symbols remain to be analysed:
U31, active, proper, topThey will be analysed ascendingly in the following order:
U31 < active
active < top
U31 < proper
proper < top(36) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
U31(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n11129_0)), gen_zeros:0':mark:tt:nil:ok3_0(b), gen_zeros:0':mark:tt:nil:ok3_0(c), gen_zeros:0':mark:tt:nil:ok3_0(d)) → *4_0, rt ∈ Ω(n111290)Induction Base:
U31(gen_zeros:0':mark:tt:nil:ok3_0(+(1, 0)), gen_zeros:0':mark:tt:nil:ok3_0(b), gen_zeros:0':mark:tt:nil:ok3_0(c), gen_zeros:0':mark:tt:nil:ok3_0(d))Induction Step:
U31(gen_zeros:0':mark:tt:nil:ok3_0(+(1, +(n11129_0, 1))), gen_zeros:0':mark:tt:nil:ok3_0(b), gen_zeros:0':mark:tt:nil:ok3_0(c), gen_zeros:0':mark:tt:nil:ok3_0(d)) →RΩ(1)
mark(U31(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n11129_0)), gen_zeros:0':mark:tt:nil:ok3_0(b), gen_zeros:0':mark:tt:nil:ok3_0(c), gen_zeros:0':mark:tt:nil:ok3_0(d))) →IH
mark(*4_0)We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(37) Complex Obligation (BEST)
(38) Obligation:
TRS:
Rules:
active(zeros) → mark(cons(0', zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0')
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0', IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
zeros :: zeros:0':mark:tt:nil:ok
mark :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
cons :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
0' :: zeros:0':mark:tt:nil:ok
U11 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
tt :: zeros:0':mark:tt:nil:ok
s :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
length :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
U21 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
nil :: zeros:0':mark:tt:nil:ok
U31 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
take :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
and :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNat :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatIList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
proper :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
ok :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
top :: zeros:0':mark:tt:nil:ok → top
hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok
hole_top2_0 :: top
gen_zeros:0':mark:tt:nil:ok3_0 :: Nat → zeros:0':mark:tt:nil:okLemmas:
cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1310_0))) → *4_0, rt ∈ Ω(n13100)
length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1919_0))) → *4_0, rt ∈ Ω(n19190)
take(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2629_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n26290)
and(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n4889_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n48890)
U11(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n7239_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n72390)
U21(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n9868_0))) → *4_0, rt ∈ Ω(n98680)
U31(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n11129_0)), gen_zeros:0':mark:tt:nil:ok3_0(b), gen_zeros:0':mark:tt:nil:ok3_0(c), gen_zeros:0':mark:tt:nil:ok3_0(d)) → *4_0, rt ∈ Ω(n111290)Generator Equations:
gen_zeros:0':mark:tt:nil:ok3_0(0) ⇔ zeros
gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) ⇔ mark(gen_zeros:0':mark:tt:nil:ok3_0(x))The following defined symbols remain to be analysed:
active, proper, topThey will be analysed ascendingly in the following order:
active < top
proper < top(39) Obligation:
TRS:
Rules:
active(zeros) → mark(cons(0', zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0')
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0', IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
zeros :: zeros:0':mark:tt:nil:ok
mark :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
cons :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
0' :: zeros:0':mark:tt:nil:ok
U11 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
tt :: zeros:0':mark:tt:nil:ok
s :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
length :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
U21 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
nil :: zeros:0':mark:tt:nil:ok
U31 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
take :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
and :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNat :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatIList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
proper :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
ok :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
top :: zeros:0':mark:tt:nil:ok → top
hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok
hole_top2_0 :: top
gen_zeros:0':mark:tt:nil:ok3_0 :: Nat → zeros:0':mark:tt:nil:okLemmas:
cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1310_0))) → *4_0, rt ∈ Ω(n13100)
length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1919_0))) → *4_0, rt ∈ Ω(n19190)
take(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2629_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n26290)
and(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n4889_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n48890)
U11(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n7239_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n72390)
U21(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n9868_0))) → *4_0, rt ∈ Ω(n98680)
U31(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n11129_0)), gen_zeros:0':mark:tt:nil:ok3_0(b), gen_zeros:0':mark:tt:nil:ok3_0(c), gen_zeros:0':mark:tt:nil:ok3_0(d)) → *4_0, rt ∈ Ω(n111290)Generator Equations:
gen_zeros:0':mark:tt:nil:ok3_0(0) ⇔ zeros
gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) ⇔ mark(gen_zeros:0':mark:tt:nil:ok3_0(x))No more defined symbols left to analyse.
(40) Obligation:
TRS:
Rules:
active(zeros) → mark(cons(0', zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0')
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0', IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
zeros :: zeros:0':mark:tt:nil:ok
mark :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
cons :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
0' :: zeros:0':mark:tt:nil:ok
U11 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
tt :: zeros:0':mark:tt:nil:ok
s :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
length :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
U21 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
nil :: zeros:0':mark:tt:nil:ok
U31 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
take :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
and :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNat :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatIList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
proper :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
ok :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
top :: zeros:0':mark:tt:nil:ok → top
hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok
hole_top2_0 :: top
gen_zeros:0':mark:tt:nil:ok3_0 :: Nat → zeros:0':mark:tt:nil:okLemmas:
cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1310_0))) → *4_0, rt ∈ Ω(n13100)
length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1919_0))) → *4_0, rt ∈ Ω(n19190)
take(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2629_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n26290)
and(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n4889_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n48890)
U11(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n7239_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n72390)
U21(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n9868_0))) → *4_0, rt ∈ Ω(n98680)Generator Equations:
gen_zeros:0':mark:tt:nil:ok3_0(0) ⇔ zeros
gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) ⇔ mark(gen_zeros:0':mark:tt:nil:ok3_0(x))No more defined symbols left to analyse.
(41) Obligation:
TRS:
Rules:
active(zeros) → mark(cons(0', zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0')
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0', IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
zeros :: zeros:0':mark:tt:nil:ok
mark :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
cons :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
0' :: zeros:0':mark:tt:nil:ok
U11 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
tt :: zeros:0':mark:tt:nil:ok
s :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
length :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
U21 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
nil :: zeros:0':mark:tt:nil:ok
U31 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
take :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
and :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNat :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatIList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
proper :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
ok :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
top :: zeros:0':mark:tt:nil:ok → top
hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok
hole_top2_0 :: top
gen_zeros:0':mark:tt:nil:ok3_0 :: Nat → zeros:0':mark:tt:nil:okLemmas:
cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1310_0))) → *4_0, rt ∈ Ω(n13100)
length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1919_0))) → *4_0, rt ∈ Ω(n19190)
take(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2629_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n26290)
and(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n4889_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n48890)
U11(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n7239_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n72390)Generator Equations:
gen_zeros:0':mark:tt:nil:ok3_0(0) ⇔ zeros
gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) ⇔ mark(gen_zeros:0':mark:tt:nil:ok3_0(x))No more defined symbols left to analyse.
(42) Obligation:
TRS:
Rules:
active(zeros) → mark(cons(0', zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0')
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0', IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
zeros :: zeros:0':mark:tt:nil:ok
mark :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
cons :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
0' :: zeros:0':mark:tt:nil:ok
U11 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
tt :: zeros:0':mark:tt:nil:ok
s :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
length :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
U21 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
nil :: zeros:0':mark:tt:nil:ok
U31 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
take :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
and :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNat :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatIList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
proper :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
ok :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
top :: zeros:0':mark:tt:nil:ok → top
hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok
hole_top2_0 :: top
gen_zeros:0':mark:tt:nil:ok3_0 :: Nat → zeros:0':mark:tt:nil:okLemmas:
cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1310_0))) → *4_0, rt ∈ Ω(n13100)
length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1919_0))) → *4_0, rt ∈ Ω(n19190)
take(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2629_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n26290)
and(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n4889_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n48890)Generator Equations:
gen_zeros:0':mark:tt:nil:ok3_0(0) ⇔ zeros
gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) ⇔ mark(gen_zeros:0':mark:tt:nil:ok3_0(x))No more defined symbols left to analyse.
(43) Obligation:
TRS:
Rules:
active(zeros) → mark(cons(0', zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0')
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0', IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
zeros :: zeros:0':mark:tt:nil:ok
mark :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
cons :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
0' :: zeros:0':mark:tt:nil:ok
U11 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
tt :: zeros:0':mark:tt:nil:ok
s :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
length :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
U21 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
nil :: zeros:0':mark:tt:nil:ok
U31 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
take :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
and :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNat :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatIList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
proper :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
ok :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
top :: zeros:0':mark:tt:nil:ok → top
hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok
hole_top2_0 :: top
gen_zeros:0':mark:tt:nil:ok3_0 :: Nat → zeros:0':mark:tt:nil:okLemmas:
cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1310_0))) → *4_0, rt ∈ Ω(n13100)
length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1919_0))) → *4_0, rt ∈ Ω(n19190)
take(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2629_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n26290)Generator Equations:
gen_zeros:0':mark:tt:nil:ok3_0(0) ⇔ zeros
gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) ⇔ mark(gen_zeros:0':mark:tt:nil:ok3_0(x))No more defined symbols left to analyse.
(44) Obligation:
TRS:
Rules:
active(zeros) → mark(cons(0', zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0')
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0', IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
zeros :: zeros:0':mark:tt:nil:ok
mark :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
cons :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
0' :: zeros:0':mark:tt:nil:ok
U11 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
tt :: zeros:0':mark:tt:nil:ok
s :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
length :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
U21 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
nil :: zeros:0':mark:tt:nil:ok
U31 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
take :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
and :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNat :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatIList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
proper :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
ok :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
top :: zeros:0':mark:tt:nil:ok → top
hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok
hole_top2_0 :: top
gen_zeros:0':mark:tt:nil:ok3_0 :: Nat → zeros:0':mark:tt:nil:okLemmas:
cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1310_0))) → *4_0, rt ∈ Ω(n13100)
length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1919_0))) → *4_0, rt ∈ Ω(n19190)Generator Equations:
gen_zeros:0':mark:tt:nil:ok3_0(0) ⇔ zeros
gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) ⇔ mark(gen_zeros:0':mark:tt:nil:ok3_0(x))No more defined symbols left to analyse.
(45) Obligation:
TRS:
Rules:
active(zeros) → mark(cons(0', zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0')
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0', IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
zeros :: zeros:0':mark:tt:nil:ok
mark :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
cons :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
0' :: zeros:0':mark:tt:nil:ok
U11 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
tt :: zeros:0':mark:tt:nil:ok
s :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
length :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
U21 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
nil :: zeros:0':mark:tt:nil:ok
U31 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
take :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
and :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNat :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatIList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
proper :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
ok :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
top :: zeros:0':mark:tt:nil:ok → top
hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok
hole_top2_0 :: top
gen_zeros:0':mark:tt:nil:ok3_0 :: Nat → zeros:0':mark:tt:nil:okLemmas:
cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n1310_0))) → *4_0, rt ∈ Ω(n13100)Generator Equations:
gen_zeros:0':mark:tt:nil:ok3_0(0) ⇔ zeros
gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) ⇔ mark(gen_zeros:0':mark:tt:nil:ok3_0(x))No more defined symbols left to analyse.
(46) Obligation:
TRS:
Rules:
active(zeros) → mark(cons(0', zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0')) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0')
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0', IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0') → ok(0')
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
zeros :: zeros:0':mark:tt:nil:ok
mark :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
cons :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
0' :: zeros:0':mark:tt:nil:ok
U11 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
tt :: zeros:0':mark:tt:nil:ok
s :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
length :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
U21 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
nil :: zeros:0':mark:tt:nil:ok
U31 :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
take :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
and :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNat :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
isNatIList :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
proper :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
ok :: zeros:0':mark:tt:nil:ok → zeros:0':mark:tt:nil:ok
top :: zeros:0':mark:tt:nil:ok → top
hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok
hole_top2_0 :: top
gen_zeros:0':mark:tt:nil:ok3_0 :: Nat → zeros:0':mark:tt:nil:okLemmas:
cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)Generator Equations:
gen_zeros:0':mark:tt:nil:ok3_0(0) ⇔ zeros
gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) ⇔ mark(gen_zeros:0':mark:tt:nil:ok3_0(x))No more defined symbols left to analyse.